

Optical Activity

A substance is optically active if it rotates the plane of polarized light.

In order for a substance to exhibit optical activity, it must be chiral and one enantiome must be present in excess of the other.

Polarized light ordinary (nonpolarized) light consists of many beams vibrating in different planes plane-polarized light consists of only those beams that vibrate in the same plane

Measuring the rotation of a chiral molecule:

Polarimeter

director of light propagation

Clockwise (+); d

Counterclockwise (-); l

Different from absolute (R,S) configuration

Specific rotation

observed rotation (a) depends on the number of molecules encountered and is proportional to:

path length (I), and concentration (c)

Specific rotation

observed rotation (α) depends on the number of molecules encountered and is proportional to:

path length (l), and concentration (c)therefore, define specific rotation $[\alpha]$ as: $[\alpha] = \frac{100 \ \alpha}{cl} \qquad \text{concentration = g/100 mL} \\ \text{length in decimeters}$

Racemic mixture

a 50:50 mixture containing equal quantities of enantiomers is called a racemic mixture

a racemic mixture is optically inactive
(α = 0)

a sample that is optically inactive can be either an achiral substance or a racemic mixture

Optical purity an optically pure substance consists exclusively of a single enantiomer enantiomeric excess = % one enantiomer – % other enantiomer % optical purity = enantiomeric excess